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Particle simulation of Lyapunov exponents in one-component strongly coupled plasmas
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The Lyapunov exponents and instantaneous expansion rates in a phase space of Coulomb many-body
systems are measured with the use of a three-dimensional particlescose [K. Nishihara, Kakuyugo
Kenkyu 66, 253 (1991)]. The code calculates particle dynamics determined by Coulomb forces among indi-
vidual particles. The Lyapunov exponents normalized by plasma frequency are found to be proportional to
% in the range of £'<160, wherd is the Coulomb coupling constant of the ion one-component plasma.
There is a large jump of the Lyapunov exponent reat170, which corresponds to the phase transition from
the liquid to the solid state in the one-component plasma. In the solid state, the normalized Lyapunov expo-
nents are proportional t&~®° for 170<I'<300. The observed dependence is discussed in analogy to a
rigid-body particle system and a weakly nonlinear lattice system for liquid and solid states, respectively.
Diffusion coefficients are found to be proportional to the third power of the Lyapunov exponent in the liquid
state, that is, for £I'<160. These results imply that the Lyapunov exponent is in close relation to the transport
processes. The instantaneous expansion rate starts from a small value and increases rapidly to a large peak
value before declining slowly towards an asymptotic value. This stage is called the Lyapunov transient stage.
Products of the transient time and the Lyapunov exponent are found to be 1.5—-2. Information of the initial state
is lost after the transient time. The chaotic behavior of the instantaneous expansion rate is also shown.
[S1063-651%97)08003-3

PACS numbes): 52.20-j, 52.65~y, 02.50.Ey, 05.76-a

[. INTRODUCTION In a high-temperature and low-density plasma, correla-
tions among particles can be ignored and the plasma can be
A Hamilton system is time reversible. However, in many-treated as an ideal plasma. In the ideal plasma, a test charge
body Hamilton systems, the coarse-grained systems may bis shielded effectively at a distance of the order of the Debye
come time irreversible. The coarse-grained phase-space vdength
ume increases continuously and covers the whole phase
space. The time evolution of the coarse-grained system can Amne?
then be described macroscopically with small freedom. The Ap= T (1.1
ergodicity and reduction of freedom are caused by the sen-
sitivity of a trajectory in the phase space to the initial condi-
tions, in other words, the trajectory instability in the phase
space. The loss of initial state information must be related to
transport processes, which are macroscopically time irrevers-
ible. The Lyapunov exponent determines the growth rates of
the trajectory instability, namely, the rates at which the
initial-state information is lost. The Lyapunov exponents inwheree, T, and n are the charge, temperature in energy
the phase space are mechanical characteristic quantities andits, and number density, respectively. Transport processes
they are definable even for strong nonequilibrium in whichare determined mainly by macroscopic fields and may not be
statistical quantities are hard to calculate or have no mearaccompanied by the loss of the initial-state information. On
ing. The Lyapunov exponent can be useful in studying thehe other hand, in a dense plasma, the correlations among
microscopic evolution and macroscopic description of theparticles cannot be ignored. The Debye length is not an ef-
systems. Recently, there has been a great deal of researdttive shielding length because the number of particles in
effort devoted to finding the relationship between thethe Debye sphere is small. The plasmas are called strongly
Lyapunov exponents and macroscopic statistical quantitiesoupled plasmas and the direct interaction among particles
[1-9]. In previous workg1-7], only the systems that are and microscopic fields dominates transport processes that are
determined by short-range forces were considered. In thiaccompanied by the loss of initial-state information. The
paper, we consider a Coulomb many-body system whose dyne-component plasma is chosen as the object of study be-
namics is determined by long-range forces. cause it is simple and a good approximation for dense plas-

and the number of particles in a Debye sphifgis large,
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Np 3

n3>1, (1.2
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mas. lons are point charges and the electrons can be regardefda two-dimensional Lorentz gas. Posch and HoovB8r

as a uniform background. lon one-component plasmas arealculated the Lyapunov exponents of a dense Lennard-Jones

characterized by only one nondimensional parameter, i.eparticle system and found a connection between the

the Coulomb coupling constant Lyapunov exponent and the color conductivity in a nonequi-
librium molecular-dynamics simulation. We present here a

1 relation between the Lyapunov exponents and the diffusion

a3zﬁ, (1.3 coefficients for ion one-component strongly coupled plas-
mas.

In Sec. Il we show the numerical method to calculate the
yapunov exponent and instantaneous expansion rate with
e three-dimensional strongly coupled plasma particle code
scopg [18,19. In Sec. lll the results obtained with the
onrescaled method are discussed, such as the saturation of
the separation between two nearby trajectories. In Sec. IV
Np=(3) 32, If the Coulomb coupling constant is much the dependence of the Lyapunov exponent on the Coulomb

smaller than one, the plasma can be regarded as an ide%qu”ng constant is inyestigated in detail_fo(_]I<300. The
plasma. On the other hand, if the Coulomb coupling constan ependencg is also discussed for the liquid sBte170
is larger than one, the plasma must be regarded as a den@ad the solid statd™170) separately.
plasma. It has short-range order and behaves like a liquid.
The one-component dense plasma has the phase transition |I. LYAPUNOV EXPONENT AND INSTANTANEOUS
from the liquid to the solid state df~170[10-13. As EXPANSION RATE
shown later, these properties are confirmed by simulations.
The separation between two adjacent trajectories in the
6N phase space is calculated for a long time. It will be A classical three-dimensional system Mf particles has
shown that the separation expands exponentially in time an8N momentump and 3\ position coordinates. Therefore,
saturates at certain distances in the momentum and positiok(p,q) represents a 8-dimensional phase-space point. We
coordinates spaces. By imposing the rescaling meftidd  can describe the motions of the particles in the system with
17] to prevent the saturation, the instantaneous expansiothe HamiltonianH as
rate is observed for a long time and the Lyapunov exponent
is obtained as its time-averaged value. 9H
The instantaneous expansion rate starts from a small value

e? 4

=7 =

where a is the ion sphere radius. The Coulomb coupling
constant represents the ratio of the Coulomb interaction erk
ergy between two particles, separated a distance equal to t
ion sphere radius, to the mean kinetic energy of a particle:
The relation between the Coulomb coupling constant and th
number of particles in a Debye sphere is given by

A. Definition of the instantaneous expansion rate

and increases rapidly to a large peak value before declining - p _ aq .
h . . A=|=]|= =G(A),
slowly towards an asymptotic valufgl,8]. This stage is q IH
called the Lyapunov transient stage. Evans, Cohen, and Mor- 0
riss [1] have derived a short-time formula for the instanta- P
neous expansion rates in the transient stage. In this paper, the 21
short-time behavior of the instantaneous expansion rates is
also investigated and products of the transient time and the H=1> mv2+®,

Lyapunov exponent are found to be 1.5-2. Information of
the initial state is almost lost within the transient time. Ami- ) )
trano and Bernf2] evaluated the probability distribution of Wherem, v, and ® represent mass, velocity, and potential
the instantaneous expansion rates for a classichtiister.  €nergy. By assuming that particles have the same mass and
They found that the probability distribution of the instanta- the potential-energy depends only on tHg Bosition coor-
neous expansion rates is in close relation to the ergodicity dfinates, we obtain
the system. We observe chaotic behaviors and universal
spectra of the instantaneous expansion rates. oH ad(q) oH p
In previous paperf3-5|, many analytical formulas of the - = , —=—. (2.2)
Lyapunov exponent were proposed. Pettini and Landdlfi Jq aq gp m
calculated the Lyapunov exponents in a nonlinear lattice for
various energy densities and found the relation between thEquation (2.1 gives a trajectory of the -dimensional
Lyapunov exponent and the energy density. In this paper, thphase-space poirk(t).
dependence of the Lyapunov exponent on the Coulomb cou- The Lyapunov exponent is an index of the trajectory in-
pling constant is investigated in detail foxI'<<300. The stability in the 6\ phase space. We consider a small pertur-
dependence is discussed for the liquid sfatel70 and the bation of the trajectory in the ¥ phase space to obtain the
solid statel’>170 separately. Lyapunov exponent. This perturbation can be regarded as a
Many authord6—9] conjecture that the Lyapunov expo- displacement that represents the difference between a refer-
nents must be related to the macroscopic transport coeffence pointA,(t) and a displaced poinA4(t) in the phase
cients because they are connected to the trajectory instabilispace. Namely, the displacement is defined as
in the phase space, which involves the loss of initial-stated(t) =Ay4(t) — A, (t). Both the reference and displaced trajec-
information. Gaspard and Nicolj§] found a connection be- tories are the solutions of Eq2.1). An equation of motion
tween the Lyapunov exponent and the diffusion coefficienfor the displacement is obtained by linearizing E2.1),
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[ &p 1 ( |a<t>|)
z(ﬁ'q)_T(A)a A n In 1%0)| (2.8
20(q(D) (2.3 for large timet and small initial displacemen&(0)|.

IG(A) o "7 In the numerical calculation, we must determine an appro-

T(A)= A qd9q | . priate amplitude of the initial displacement so that the dis-
1 0 placement can be treated as a perturbation of the reference

trajectory and it does not cause numerical error in the calcu-

This equation can be solved formally as lation of the Lyapunov exponent. The initial separation be-

tween two trajectories cannot be set equal to a very small
) =X(t)K0), value because an excessively small separation causes large

numerical errors. Even if the initial separation is small
. enough, because of its exponential growth, the separation
— becomes too large in a short time to observe the Lyapunov
X(t) exp( fodT TAC T)))' @4 exponent. To avoid this difficulty the amplitude of the dis-
placement should be rescaled. It should be noted here that
The Lyapunov exponent represents the averaged exponenti@le | yapunov exponent depends not on the amplitude of the
rate of the divergence of the displacement. It depends on agisplacement, but on its direction.
initial reference point and the direction of the displacement The displacement is rescaled as follojg#—17. In the
in the phase space numerical calculation, the reference and displaced trajecto-
ries A, (t) andA4(t) are defined only at a discrete time with

A(A(0),9=Jim % In{”x(t)dw, a finite time incrementAt. At the nth time step, thenth

IE] rescaling factor is calculated as
(2.5
#0) |&(n—1)At)|
e=j——. =
||&0)|| f(n)scale |5(nAt)| (2.9)
A new variable can be defined as an instantaneous divelx new starting pointAj(nAt) of the displaced trajectory at
gence of two initially close trajectories by the nth time step is then determined by
IX(t)el AY(NAD) =A,(NAL) +f(N)gemed NAL).  (2.10
NinsdA(D), &= (2.6 ‘ ’ .
The instantaneous expansion rate can be calculated as
which is called the instantaneous expansion rate. A time
variation of the instantaneous expansion rate informs us 1 |&(nAt)]
about the uniformity of the phase mixing and microscopic Ninsf NAL) = At In W) (2.11

process in the phase space in detail. In addition, the

Lyapunov exponent is redefined as a time-averaged value Gfhe rescaling procedure makes long-time calculation pos-

the instantaneous expansion rate sible. During that time, an initial direction of the displace-
ment turns to the maximum stretching direction correspond-

B o1 [t ing to the largest Lyapunov exponent. We obtain the largest
)‘_<)‘i”3‘>=tll—rﬂo t Jodt NinsA(1),©). @7 Lyapunov exponent in the system as
If the system is ergodic, the Lyapunov exponent depends not N
on the initial pointA(0), but only on the direction of the A= i 1 Nine NAY) (2.12
initial displacement in the phase space. ANédimensional Mmax—* N, At 1= S ' '
vectore can be expressed as a linear combination of tNe 6
base vectors. In principle, the Lyapunov exponent given by C. Simulation code

Eq. (2.7) coincides with one of the® Lyapunov exponents

corresponding to the ¥ bases of the eigenvectors. If the tion with the use of a three-dimensional particle ceg®PE

direction of the initial displacement is chosen at rando .
(“random” means that the direction is not perpendicular trc?[lg’lq’ whereN, V, andE rep.resent the number Of. partlples,
volume, and total energy. It is necessary for particle simula-

any base eigenvectorst has a component of the base eigen_tions of dense plasmas to calculate precisely the Coulomb
vector corresponding to the maximum Lyapunov exponent.. . P X precisely
interactions among close and distant particles. It is, however,

very expensive to calculate forces among all particles. The
particle-particle—particle-mestPPPM method[18-2Q is

If the trajectory A(t) depends sensitively on the initial used in the code to treat many particles, in which particle-
conditions, the displaced trajectory separates exponentiallgarticle method is employed for the calculation of the forces
in time from the reference trajectory. The Lyapunov expo-among close particles and the particle-mesh mefl2ddi is
nent defined by Eq2.5) can be calculated by employed for the calculation of the forces among distant

We performNV E-invariant molecular-dynamics simula-

B. Numerical calculation method
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FIG. 1. Radial distribution functions obtained by SCOPE. Hori-
zontal axis is the distance normalized by the ion sphere radius.
Open circles, triangle, and square represent present simulation re-
sults for I'=1, 10, and 100, and lines represent Monte-Carlo
[10~12] simulation results.

particles. The Coulomb forces among close particles are di-
rectly summed up in the particle-particle method, while in

the particle-mesh method the forces on a particles are inter-
polated from electric fields of mesh points. The electric fields
are obtained by solving the Poisson equation with charges
assigned on the mesh points. To reduce numerical errors 10'10' = 50 ‘106' ‘ 15'0 "200
caused by the particle-mesh method, the original PPPM (b) time ot

method developed by Hockney and Eastwd@d] is im- P
proved inscorPe[18]. scopPEis described in detail Appendix
A.

position displacement
<6q%>"?*/ a

FIG. 2. Time evolution of RMS separation distances between

nearby trajectories in the momentum spé&eand position coordi-

Our _Sys_tem comprises 500 ions in a unit cubic box anq1ates spacéb) for various Coulomb coupling constanifs=1, 10,
the periodic boundary condition is adopted. The Coulombygg 150, and 180. Time, momentum, and position are normalized

force on a particle is directly summed up over approximatelyy plasma frequencp, , product of mass, and thermal speed,,
210 particles. The number of meshes for the particle-meshng jon sphere radius, respectively.

method is set equal ta®8512. The unit time steps used are
Atw,=0.006 for I'=1, Atw,=0.01 for I'=2, and 5.0x10 *muvy, in the momentum space and %00 °a in
Atw,=0.02 for I'=5-300, wherew, is the plasma fre- the position coordinates space, wherg is thermal speed
quency. To obtain a thermal equilibrium state, we have permy2=T. These values 5010 *mv, and 5.0<10 3a result
formed a pre-simulation for a duration of 26 before the in a high enough accuracy for calculating the divergence of
observation of the Lyapunov exponent. The radial distributhe nearby trajectories. Figure¢aand 2b) show the time
tion functions are obtained for five periods of plasma oscil-variations of the rms displacements in thi-8imensional
lation in the presimulation and their time-averaged values arenomentum and position coordinates spaces. The rms dis-
shown in Fig. 1. They agree quite well with Monte Carlo placement starts from small values and varies irregularly in
simulation resultd10-13, which indicates the validity of time before starting to diverge exponentially. This irregular
SCOPE transient stage is called the Lyapunov transient stage. In the
transient stage, the initial displacement seeks out the eigen-
ll. TIME VARIATION OF DISPLACEMENT direction in the phase space corresponding to the largest ei-
genvalue, which is independent of time and the direction of
the initial displacement. We will discuss this transient stage
Before calculating the Lyapunov exponent with the con-in detalil in Sec. IV. After the Lyapunov transient stage, it is
tinuous rescaled method, we confirm that the displacemerdiearly seen that the displacements diverge exponentially in
diverges exponentially in time. The initial displacementtime for the various Coulomb coupling constants. This result
should be an appropriate amplitude, as we have discussed iimdicates that the chosen initial displacement is so small as to
Sec. Il. We perform time-advanced calculations of the sepabe regarded as an infinitesimal value. In other words, the
ration between reference and displaced systems with the nomotion of the displacement can be described by the linear-
rescaled method for various Coulomb coupling constants. Aized equation(2.3) in this range of the displacement. The
a result of the calculations, we will show that the nearbyexpansion rates in the momentum and position coordinates
trajectories separate exponentially in time. spaces are almost the same values. The exponential growth
In the six-dimensional spacep(,py,p,,dx,dy.d,), the  of the displacements indicates that the system has the posi-
magnitude of the initial displacement is given by the normaltive Lyapunov exponent. The averaged expansion rates de-
distribution and its direction is isotropic. The root mean crease with the increase of the Coulomb coupling constant.
squares (rms’s) of the displacements are set to be As shown later, the expansion rates measured by both the

A. Exponential divergence of nearby trajectories
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nonrescaled and rescaled methods are almost the same.

B. Saturation of displacement

As shown in Figs. @) and 2b), when the displacements
reach certain amplitudes, the diverging speeds deviate from
the exponential growth. The deviations from the exponential
(linean growth occur around the separations |§b|~muvy,

Instantaneous expansion rates

and |8g|~3~4\p for the various Coulomb coupling con- -0.5 ]
stants, where\ is a/\/3T. It is interesting to note that the

separatiorjég| corresponding to the deviation point is deter-

mined by the Debye length even for the strongly coupled T T 2 s T s e e
plasmas. time ot

Following the separation distance for a long time, the rms
of the separation distance in the momentum space saturates F|G. 3. Instantaneous expansion rate normalized by plasma fre-
at |op|~6muvy, and the one in the position coordinates quency as a function of time fdf=10 in the transient stage.
space diverges asq|~t2for the various Coulomb coupling
constants. As shown below, these asymptotic behaviors afhereq;(t)=q;(0)+dg;(t). When the two systems are not
the displacements indicate that the reference and displacedrrelated with each other, the first termqéierqrzi) in Eq.

trajectories are no longer correlated. Assuming that the VE3.2) becomes the leading term of the displacement in the
locity distributions of both the reference and displaced SYSnosition coordinates space. The motion of the displacement
tems are Maxwellian$y(p) with the same temperature, the g then regarded as a random-walk process. The mean square
displacement in the momentum space is written as of the displacement in the position coordinates space is just

twice as large as the mean-square deviation of particles in the
1 , 1 N ) ) three-dimensional position coordinates space. As a result, the
N 21 (Pg,—Pr,) =N .21 (Pd, —2pPr, Py, Pr,) rms of the displacement in the position coordinate space di-
verges proportionally ta*? in the liquid state, while it be-
comes a constant in the solid state.

N

op*=

2 N
=6mVy— o Z Pr, - Pd;» (3.9
=1 IV. INSTANTANEOUS EXPANSION RATE
where the relation (N)= inizsz)cpsz(p)dngthh has A. Transient behavior of the instantaneous expansion rate
been used. The subscriptandd denote, respectively, ref- To estimate the Lyapunov exponent more accurately, we
erence and displaced systems, and the subdcrggiresents calculate the instantaneous expansion rates with the rescaled
the ith ion in the corresponding systems. Since the givermethod for the various Coulomb coupling constants.
initial displacement in the momentum space is very small inAs shown in the preceding section, we should choose
comparison tanv,, the 3N-dimensional momentum vector the magnitudes of the initial displacement between

in the reference system is almost parallel to that in the diss 0x 1073~1mv,, and 5.0< 10 3~4a/\/3T in the momen-
placed system. As the rms displacement in the momentuym and position coordinates spaces, respectively. In the cal-
space diverges exponentially, the initial-state information becylation with the rescaling method, the normal distribution
comes lost. When the initial-state information is perfectlywith the rms displacements of a0 °mv,, and

|OSt, namely, the two Systems are not correlated with eaCB_OX]_O_sa is used in the momentum and position coordi-
other, an angle between the three-dimensional momentumates spaces, respectively. The instantaneous expansion rates
vectors in the reference and displaced systems becomes raglve not only the Lyapunov exponent, but also more detailed
dom. This indicates that theN8dimensional momentum information about the uniformity of the trajectory instability.
vector in the reference system is almost orthogonal to that in Figure 3 shows the instantaneous expansion rate for
the displaced system. Then the momentum displacement bg-—10. Typically, it starts from a small value and increases

comes\/é_mvth. _ N _ ‘rapidly to a large peak value before declining slowly towards
The displacement in the position coordinates space ian asymptotic value. This stage is called the Lyapunov tran-
written as sient stage. In the transient stage, the initial displacement

seeks out the phase-space eigendirection corresponding to
the maximum eigenvalue, i.e., the largest Lyapunov expo-
) nent. We observe how the displacement varies in the tran-
(Qdi_qn) sient stage. As an example, Fig. 4 shows the case that the
initial distribution of each component of the displacements

5°=

Z| -
VE

i=1

1 N 1 N (5pxi ,5pyi 1§pzi 15qxi 15qyi -5QZi1 wherei = 1_N) has two
=N 2, (dgj +da?)+ N 2, 2{~dqq-da, peaks at=5.0#3x10 *muy, in the momentum spaces and
=1 =1 +5.0/3x10 %a in the position coordinates spaces. The dis-
+[Qd-(0)_qr-(o)]'(dqd-_dqr-)}+W1 tribution relaxes to the normal distribution during the

Lyapunov transient time. After the transient time, the distri-
(3.2 bution does not change for any initial displacements except
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FIG. 4. Distribution functions of the displacement in the mo- % 0.1 ] =50
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line) for I'=10, wheredN represents number of particles of which 0.1 ]
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for small fluctuations. This result indicates that the initial-
state information is lost within the Lyapunov transient time.  FIG. 6. Normalized instantaneous expansion rates as a function

The normalized ratio of the displacement magnitude inof time for I'=1, 10, 50, and 200.
the momentum to that in the positidap|/(|5q|w,) also be-
comes independent of time and the direction of the initial B. Spectra of the instantaneous expansion rate
displacement after the transient time. As shown in Fig. 5, the
normalized ratio is proportional t6~® for 1<I'<170 and
does not depend on the Coulomb coupling constant fo
I'>170. In Appendix B it is qualitatively explained that the
ratio is independent of the Coulomb coupling constant in the: ", A .
solid state with the use of a simple model. The ratio give isions among particles occur rarely and strongly in a local

part of the information for the eigendirection correspondingreg'on' Even for™>1, the fluctuations of the instantaneous

to the largest Lyapunov exponent. The result is evidence th&)&pantsmtr;] r?t;]arte as I?rge _astths:_rt average. T_rflese berzﬁwors
any of the directions of displacements turn to the direction'nh icate tha Tf\ r_ajetc otry Instability 1S ponuT o_rn:hm €
corresponding to the largest Lyapunov exponent within thd2ase space. Ihe instantaneous expansion raté in thé asymp-
transient time. totic stage may provide the uniformity of the phase mixing

Figure 6 shows the time variation of the instantaneou.f_nd more precise information about the microscopic process.

expansion rates fdf=1, 10, 50, and 200. The transient time igure 8 shows the spectra of the instantaneous expansion
increases as the Coulomb coupling constant increases, fi

ftes forl'=1, 2, 10, 50, and 200. The instantaneous expan-
other words, as the Lyapunov exponent decreases. Figure

n rates have broad spectra and consist of three different
shows the products of the Lyapunov exponents and thapectra. In order of frequency, the first component is a pla-
Lyapunov transient times foF'=1-150. The products are

teau around the plasma frequency, the second decays like
nondimensional values. As shown in Fig. 7, the products ar

{72 and the last decays & *. The plateau around the
almost constant of 1.5-2.0, namely, the Lyapunov transie lasma frequency may correspond to the collective motion in
time is proportional to the inverse of the Lyapunov exponent.

As shown in Fig. 6, the instantaneous expansion rates

pave large fluctuations and are chaotic in time. Bursts of the

Instantaneous expansion rate, which are much larger than its
verage, are observed fbr=1. This result suggests that col-

the plasma.

10—

displacement ratio
<8p?>12 [ (<S> @)
3

and Lyapunov transient time

0 vvvonl ol

products of Lyapunov exponent

10-1 el RN ETE AT
10° 10’ 102 10° 10° 10' 10?2 108

Coulomb coupling constant T Coulomb coupling constant T’

FIG. 5. The ratiodp/(dqw,) as a function ofl’ =1~200. A FIG. 7. Products of the Lyapunov exponent and the Lyapunov
solid line is obtained by a least squares method fei'£160. transient time fol’=1~150.
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indicates that the trajectory instability in the phase space is

2 scaled by the tima/vy,. As we will discuss later, this prop-

g 10° erty may be universal for condensed matter in the liquid
8 E ' ' phase. The large jump of the Lyapunov exponent is observed
g 10 Io _ near_F~_170, Which_corresp_onds to the phase transition from
2 ) the liquid to the solid state in the ion one-component plasma.
: 0102 [F16mmeuns 7 This phase transition point is almost the same value that is
32 E s : calculated with the Monte Carlo simulatioh$0—-13. The

g 2. o =200 . Lyapunov exponents normalized by the plasma frequency
g~ 107 F E decrease more rapidly from 0.04 and proportionallf'td-

g a f ] with the increase of the Coulomb coupling constant for
g 10 E 3 I'>170. This result indicates that the trajectory instability in
"g 10° F ] the phase 'space occurs at a distance shorter than the ion
5 1007 10° 10' 102  10° sphere radius for sollld' plasmas. _

dé- frequency oo, In analogy to a rigid-body particle system, we may ex-

plain qualitatively the dependence of the Lyapunov exponent
on the Coulomb coupling constant observed in the simula-
FIG. 8. Spectra of the instantaneous expansion rate#dr, 2,  tion. In a rigid-body particle system, the Lyapunov exponent
10, 50, and 200. is estimated from the mean relative velocity= 4/\/;vth the
mean free path, and an amplification factor of the displace-
C. Lyapunov exponent ment in a Collision[3]. The amp|ificati0n factor is found to

be approximately I{l1/2R) +1], whereR represents the ra-

The Lyapunov exponents are calculated for the variougyis of 4 rigid body particle. Since for a rigid body the den-
Coulomb coupling constants. With the rescaled method, W%ity is n=(47a%3)"! and the collision cross section is

can get long-time data, 10 000 time step€w,t-200upt), [~ "R2 the mean free path is written a@¥3R?. In the

enough to regard the t[me—average_d instantaneous eXpanSiﬂBid-body particle system, the Lyapunov exponent is then
rates as the asymptotic values. Figure 9 shows the depe@'stimated as '

dence of the Lyapunov exponents on the Coulomb coupling
constant. The Lyapunov exponents normalized by plasma

frequencyN w, vary from 0.83 to 0.12 and are proportional N~ Vo nl— +1]=3 \Evtth In 2/a 3+1

to I'"%%in the range £I'<160. The inverse of the plasma I 2R T as 3\R '
frequency 1, is the time that a particle with thermal speed (4.
takes to travel a Debye lengi, . The Lyapunov exponents o )

normalized byvg/a, M(v4/a), vary from 1.44 to 2.05 and In the liquid plasma, the repulsive force between two par-

are proportional td" "% in the same range, wheegv, is ticles is so large that a particle cannot get into the ion sphere
the time that a particle with thermal speed takes to travel aRf other particles and the nearest distance between two par-
ion sphere radius. The Lyapuhnov exponent normalized bicles may be the same order as the ion sphere rad|u_s, inde-
vy/a is almost independent of the Coulomb coupling con-Pendently of the Coulomb coupling constant. In the simula-

stant and its magnitude is of the order of one. This resulfions, the closest distance increases slightly with the increase
of the Coulomb coupling constant from @.50 0.% for

1<I'=160. Then the Lyapunov exponent normalized by
(vifa) becomes of the order of one in the range 0.86-0.91
and becomes independent of the Coulomb coupling constant.

-
(=]
-

[

)

\.C
S 2 The estimated value agrees roughly with the simulation re-
< = sult M(vg/a)~1.4r% The difference of the numerical fac-
§ ".‘::‘ tors between the simple estimation and the simulation results
S 10"} 110° 2 may be cguse_d by neglecting many-body particle correlation
g g in the estimation.
> 3 For the solid plasma, every patrticle is oscillating around a
2 3 lattice point because it does not diffuse in the position coor-
é. §_ dinates space. The rigid-body particle model cannot be ap-
2 102 . ‘ Mol S plied for the solid model, but the analogy of a nonlinear

10° 10! 102 100 lattice system can be used. Then the trajectory instability can

Coulomb coupling constant T be caused by lattice vibration as a nonlinear lattice. In a
harmonic lattice, the amplitude of lattice vibration is propor-

FIG. 9. Dependence of the Lyapunov exponents normalized byional to the square root of the kinetic energy of a particle
plasma frequency\/w,, (closed circlesand those normalized by and its oscillation period 2w, does not depend on its am-
ve/a, M(vg/a), (open circles on the Coulomb coupling constant. Plitude. If the nonlinearity of the lattice is small, it is ex-
Thick and thin solid lines are obtained by a least-squares methoBected that the growth rate of the trajectory instability is
with the results oi/w, and\(vy/a), respectively, for £I'<100. proportional to the square of the amplitude of the lattice
Thick and thin dashed lines are obtained by a least-squares methatdbration[4]. As a result, the Lyapunov exponent normalized
with the result of\/w, andN(vyy/a), respectively, for 176€T'<300. by the plasma frequency is proportional to the kinetic en-
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FIG. 10. Dependence of the normalized diffusion coefficients
D/azwp on the Coulomb coupling constant. The solid line is ob-
tained by a least-squares method with the results foF £160.

FIG. 12. Dependence of the normalized diffusion coefficient
D/azwp on the Lyapunov exponent normalized by plasma fre-
quencyMw, . The solid line is obtained by a least-squares method

] ] . o ] with the results for £I'<160.
ergy, that isI"". This estimation is also in good agreement

with the simulation resulk/w,~I'"*". . o . .
ticle position is not proportional to time, but constant for

. I'=200. The root-mean-square deviations of the particle po-
D. Relation between the Lyapunov exponent sition are 0.4—0.5 in the range 17€1'<300. This result
and diffusion coefficient indicates that in the ion one-component solid plasmas, the

We conjecture that the Lyapunov exponents must be reamplitudes of the lattice vibration are @-40.5 for 170<I"
lated to the macroscopic transport coefficients. To investi-<300. o o S
gate this relation, the diffusion coefficients are calculated for AS shown in Fig. 12, the diffusion coefficient is propor-
the various Coulomb coupling constants. The diffusion coeffional to the third power of the Lyapunov exponeii]
ficients are estimated from both the asymptotic mean-square/a°@p~ (M wp)” for the liquid state £I'<160. We find a
deviations(MSD's) of particle position and the time integra- 'elation between the Lyapunov exponents and the diffusion
tion of the velocity autocorrelation function. Both estima- COefficients for ion one-component strongly coupled plasmas
tions agree quite well with each other forI'<160. in the liquid state.

Figure 10 shows the dependence of the diffusion coeffi-
cients on the Coulomb coupling constant. The normalized V. CONCLUSION
diffusion coefﬁcientsl:)/azcup are found to decrease from 2
to 2x10 3 with the increase of the Coulomb coupling con-
stant. The normalized diffusion coefficients are proportiona
to I 118 for 1<I'<160. As shown in Fig. 11, the MSD of

We have evaluated the Lyapunov exponent in the phase
space for ion one-component plasmas with the use of the
three-dimensional particle codecorPe[18,19. It has been
observed with the nonrescaling method that the separation

the particle position is proportional 10 time, that is, the dif- distance between two nearby trajectories diverges exponen-

fusion coefficients are finite values in the same range. Th? L O )
o ; o . jally in time and that the deviation from the exponential
phase transition point from the liquid to the solid state occurs rowth occurs around the separations |6p|~muy, and
th

~ i 9
nearI'~170. Figure 11 also shows that the MSD of the par 89| ~3—4 g for the various Coulomb coupling constants. In

the transient stage, the initial displacement seeks out the
phase-space eigendirection corresponding to the maximum
Lyapunov exponent. After the Lyapunov transient time, the

2 one-body distribution of the displacements relaxes to the iso-
r=10 tropic normal distribution and the rat{ép|/(| 59| w),) also re-
1.5l P laxes to constants determined by the Coulomb coupling con-
o stant. It is also confirmed that the Lyapunov transient time is
r= 150 proportional to the inverse of the Lyapunov exponent.
1t . The chaotic behavior of the instantaneous expansion rate

is investigated. Bursts of the instantaneous expansion rate are
observed fol'=1, and even fol'>1 the fluctuations of the

0.5f P ] instantaneous expansion rates are as large as their averages.
fees” T~ =200 These behaviors indicate that the trajectory instability is non-
0 . ; uniform in the phase space. The instantaneous expansion
0 50 100 150 rates have broad spectra and consist of three different spec-
time ot tra. In order of frequency, the first component plateaus

mean square deviation of particle position
<q(t)-q(0)>? / a?

around the plasma frequency, the second decaysasind
FIG. 11. Mean-square deviation of particle position as a func-the last decays as L.
tion of time for'=10, 150, and 200. The Lyapunov exponents normalized by plasma fre-
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ol o o G o o close particles(PP methoyl and distant particles(PM
[} O o o . . .
5 method. In the PP method, the direct particle-particle forces
o ol iof° %°%i6 o - . . .
ste g et et on theith particle(closed circlg are calculated by summing
st 2 = —— =5 over the forces from the particlgg and j,, which are lo-
° . o q.3° 5 ot cated in the same PP megiatched meshas theith particle
a AN - ( O and in its nearest-neighbor 26 PP meskgsy meshes
) °°Z 24212 AR CRER K. This region of 27 PP meshes is called the PP region. The
° 2 QLo ° forces from the particleg; andj, beyond the gray region are
ool 7 77K °J3 0.:%4, obtained using the PM method. The PM method is the same
°q° 9 % 0 o as the particle-in-cel(PIC) method[21] used in the ideal
A.lio P io] s leio P plasma particle simulation. Namely, the charge of a particle
of °io o] ©i°] % °|e is assigned to grid points, and using charge density at the
°f o " g 95| o °F : 9° grid points, the finite-difference Poisson equation is solved to
° o ° - [oi {0 obtain the electric field of grid points. The force on ttk
o{oiojoiolo oloiojoio particle is then interpolated from the electric field of the grid

point.
FIG. 13. Schematic diagram of two-dimensional meshes and The force on theth particle can be formally written as
particle positions with open and closed circles. Thin solid and
dashed lines represent coarse graiffeB) and fine(PM) meshes, e
respectively. The thick solid line shows the two-dimensional unit Fi=e; —'3 (qi—a)
system. Hatched and gray regions are called the PP region for the j PP region |Qi_Qj| J
calculation of forces on a particle(closed circlg.

Pe 3
quency are found to be proportional Fo2® for 1<I'<160 +e,f f fpp region| G — | (@-ada
and proportional tol'"®® for I'>170. These states corre-
spond to dense liquid and solid plasmas. The large jump of
the Lyapunov exponent nedr~170 corresponds to the
phase transition from the liquid to the solid state. The ob-
served dependence is explained qualitatively in analogy tvhereq;, g;, andp, are theith andjth particle positions and
the rigid-body particle system and the weakly nonlinear lat-charge density of uniform background electrons, respec-
tice system for the liquid and the solid state, respectivelytively. The first term expresses the direct particle-particle
The diffusion coefficients are found to be proportional to theforces from particles in the PP region. The second term is the
third power of the Lyapunov exponents in the liquid state. electric force from uniform background electrons in the PP

region. The third term represents the force interpolated from
ACKNOWLEDGMENTS the electric field of the grid points at théh particle position
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In the PPPM method, errors of the force calculation arises

from the PM method. We have made the following improve-
ments[18] on the original PPPM methd@0]: the introduc-

In the PPPM method, three-dimensional meshes are intrdion of fine meshesthe PM meshfor the PM calculation in
duced as shown by thin solid lines in Fig. 13, which illus- addition to the coarse-grained PP meshes, the use of the
trates two-dimensional meshes and particle positions byhird-order spline function for both the charge assignment
closed and open circles. We call here the thin solid and@nd the electric-field interpolation, the use of the fourth-order
dashed meshes the PP mesh and the PM mesh. The rolefisfite-difference scheme for the Poisson equation, and the
the meshes is explained later. The thick solid line shows thexclusion of the double-counted electric fief ., ,(q;) in
two-dimensional unit system size. Every particle is bookedEq. (Al).
in each corresponding PP mesh, namely, every particle has a A characteristic feature of the PIC method is the suppres-
“mesh address” and the booking is renewed at every timesion of forces between close particles to simulate an ideal
step. In the PPPM method, the mesh addressed is easily catollisionless plasma. It causes the large error for the calcu-
culated by taking an integer of the particle position normal-lation of the forces among close particles. The absolute value
ized by the mesh size. This is one of the advantage of thef the error is determined by the distance between two par-
PPPM method. ticles normalized by the mesh size. It is shoj#ig] that by

In the PPPM method, the forces among all of the particleemploying the third-order spline function and the fourth-
in the systems are calculated with two different methods foorder finite-difference scheme the error decays proportional

APPENDIX A
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to the inverse of the fourth power of the normalized distancehe Ewald method22], in which the forces among all par-
between two particles, namely;(|q; /A)~%, whereA is the ticles are calculated with the periodic boundary condition. In
PM mesh size and;;=q;—q; . The fine mestiPM mesh is the present work, t_he unit system is divided intd RP
thus required for the PM calculation. On the contrary, theMeshes, as shown in Fig. 13 and the number of particles is
large size of the PP mesfthin solid lineg is desirable to 200 The sizes of the PP mesh and the PP region are then
take many particles into account for the direct particle-2PProximately 3.2 and 9.6 times longer than the ion sphere

particle force calculation. The size of the PP region can béi%uniédrisppgsg\rli&(%gg(figito)ppeg:lt%ee-g ?rztlglleer;%rge '°
4 .

chosen to be greater than the particle correlation length, As described before, the electric fie . ,(q;) induced
which is approximately several ion sphere radii for stronglypy " harticles in the PP region should be subtracted from
coupled plasmas. As shown in Fig. 13, the size of the ﬂn@I mn(@). In the PM method, using charge density at the grid
mesh(dashed linesis chosen to be half of the PP mesh in points, the finite-difference Poisson equation is solved to ob-
the present work. Then the normalized distance betweetain the electric field at grid points. In the fourth-order dif-
nearest distant particles is greaterthatqu/A>2. By using ference scheme, the charge density at the grid point
this fine mesh size, the average error of the forces has begt',m’,n’) induces the electric field of the grid point
shown to be less than 0.02048] by direct comparison with (I, m,n),

27TA 'm’ n'
. I(I I(m kn
L'-1 M'—1 N'—-1 expgi2mw F('_")*W(m_m’”ﬁ(”_”’)
X
k=0 kp=0 k,=0 . Ky ., Ky _, K ., TKm ., Ky _, 7Ky
sir? X (3+S|n2 X +sir? L 3+sir? I +sir? N 3+sir? N

1
X = {sin—- c0S—- Sin——— COS—— S coS
3 L’ M’ M’

7k, 7k, 7k, 7ky . 7Kg 7k,
C NN SN (A2)

wherep,, v s represents the charge density at the grid poingiven by q=0,+d,*2d,..., whered~2a. The potential
(I',m’,n"). Since the electric fiel& , (q;) is induced by formed by the nearest-neighbor lattices can be expanded into
the charge density within the PP region, all of the chargghe second order in the vibration amplitude ngar0 as
densities in the PP region should be summed over. In prin-

cipal,L’, M’, andN’ should be infinite integers. Their num-

bers are chosen to be 256 times larger than the unit system N e? :

size normalized by the PP mesh size since the contribution of op=— gz 9P, q=p. (B2)

the particles from a great distance on the electric field decays

faster than the reciprocal of the third power of the distance, ) ) )
The ratio|dp|/|&| is then estimated as

APPENDIX B

As shown in Fig. 4, the normalized ratio of the magnitude lopl e /1 [2a)°
of the momentum displacement to that of the position dis- 18]~ Vmd® “pN12\4q]/ - (B3)
placement becomes independent of the Coulomb coupling
constant in the solid state. Let us consider a simple model t

explain this ratio. The time derivative of the equation of
motion, Eq.(6), is given by

The simulation results give that the ratio is of the order of
0.3w, for '>170. The ratica/d in Eq. (A3) is an invariant in
the solid state. Assuming that A8 d<2a, the range of the
ratio is 0.28%,<|8p|/|60<0.39Qw,, . Thus this simple model
- shows that the ratio ofép|/(|5q|w,) is a constant and is in-
So= — dz_‘D Sq— dz_q) s B1 dependent of the Coulomb coupling constand i defined
P= dg® q dg® p- (B1) as the nearest effective length between two particles in the
liquid state, it decreases as the Coulomb coupling constant
The time derivative of the potential can be neglected for a@ncreases. This interpretation explains qualitatively the simu-
small amplitude of lattice vibration. The lattice points can belation result in the liquid state.
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