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Particle simulation of Lyapunov exponents in one-component strongly coupled plasmas
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The Lyapunov exponents and instantaneous expansion rates in a phase space of Coulomb many-body
systems are measured with the use of a three-dimensional particle codeSCOPE @K. Nishihara, Kakuyugo
Kenkyu 66, 253 ~1991!#. The code calculates particle dynamics determined by Coulomb forces among indi-
vidual particles. The Lyapunov exponents normalized by plasma frequency are found to be proportional to
G22/5 in the range of 1<G<160, whereG is the Coulomb coupling constant of the ion one-component plasma.
There is a large jump of the Lyapunov exponent nearG;170, which corresponds to the phase transition from
the liquid to the solid state in the one-component plasma. In the solid state, the normalized Lyapunov expo-
nents are proportional toG26/5 for 170,G,300. The observed dependence is discussed in analogy to a
rigid-body particle system and a weakly nonlinear lattice system for liquid and solid states, respectively.
Diffusion coefficients are found to be proportional to the third power of the Lyapunov exponent in the liquid
state, that is, for 1<G<160. These results imply that the Lyapunov exponent is in close relation to the transport
processes. The instantaneous expansion rate starts from a small value and increases rapidly to a large peak
value before declining slowly towards an asymptotic value. This stage is called the Lyapunov transient stage.
Products of the transient time and the Lyapunov exponent are found to be 1.5–2. Information of the initial state
is lost after the transient time. The chaotic behavior of the instantaneous expansion rate is also shown.
@S1063-651X~97!08003-3#

PACS number~s!: 52.20.2j, 52.65.2y, 02.50.Ey, 05.70.2a
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I. INTRODUCTION

A Hamilton system is time reversible. However, in man
body Hamilton systems, the coarse-grained systems may
come time irreversible. The coarse-grained phase-space
ume increases continuously and covers the whole ph
space. The time evolution of the coarse-grained system
then be described macroscopically with small freedom. T
ergodicity and reduction of freedom are caused by the s
sitivity of a trajectory in the phase space to the initial con
tions, in other words, the trajectory instability in the pha
space. The loss of initial state information must be related
transport processes, which are macroscopically time irrev
ible. The Lyapunov exponent determines the growth rate
the trajectory instability, namely, the rates at which t
initial-state information is lost. The Lyapunov exponents
the phase space are mechanical characteristic quantities
they are definable even for strong nonequilibrium in wh
statistical quantities are hard to calculate or have no me
ing. The Lyapunov exponent can be useful in studying
microscopic evolution and macroscopic description of
systems. Recently, there has been a great deal of rese
effort devoted to finding the relationship between t
Lyapunov exponents and macroscopic statistical quant
@1–9#. In previous works@1–7#, only the systems that ar
determined by short-range forces were considered. In
paper, we consider a Coulomb many-body system whose
namics is determined by long-range forces.
551063-651X/97/55~3!/3439~11!/$10.00
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In a high-temperature and low-density plasma, corre
tions among particles can be ignored and the plasma ca
treated as an ideal plasma. In the ideal plasma, a test ch
is shielded effectively at a distance of the order of the Deb
length

lD5A4pne2

T
~1.1!

and the number of particles in a Debye sphereND is large,

ND[
4p

3
nlD

3 @1, ~1.2!

where e, T, and n are the charge, temperature in ener
units, and number density, respectively. Transport proce
are determined mainly by macroscopic fields and may no
accompanied by the loss of the initial-state information.
the other hand, in a dense plasma, the correlations am
particles cannot be ignored. The Debye length is not an
fective shielding length because the number of particles
the Debye sphere is small. The plasmas are called stro
coupled plasmas and the direct interaction among parti
and microscopic fields dominates transport processes tha
accompanied by the loss of initial-state information. T
one-component plasma is chosen as the object of study
cause it is simple and a good approximation for dense p
3439 © 1997 The American Physical Society
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3440 55Y. UESHIMA et al.
mas. Ions are point charges and the electrons can be rega
as a uniform background. Ion one-component plasmas
characterized by only one nondimensional parameter,
the Coulomb coupling constant

G[
e2

aT
,

4p

3
a3[

1

n
, ~1.3!

where a is the ion sphere radius. The Coulomb coupli
constant represents the ratio of the Coulomb interaction
ergy between two particles, separated a distance equal t
ion sphere radius, to the mean kinetic energy of a parti
The relation between the Coulomb coupling constant and
number of particles in a Debye sphere is given
ND5~3G!23/2. If the Coulomb coupling constant is muc
smaller than one, the plasma can be regarded as an
plasma. On the other hand, if the Coulomb coupling cons
is larger than one, the plasma must be regarded as a d
plasma. It has short-range order and behaves like a liq
The one-component dense plasma has the phase tran
from the liquid to the solid state atG;170 @10–13#. As
shown later, these properties are confirmed by simulatio

The separation between two adjacent trajectories in
6N phase space is calculated for a long time. It will
shown that the separation expands exponentially in time
saturates at certain distances in the momentum and pos
coordinates spaces. By imposing the rescaling method@14–
17# to prevent the saturation, the instantaneous expan
rate is observed for a long time and the Lyapunov expon
is obtained as its time-averaged value.

The instantaneous expansion rate starts from a small v
and increases rapidly to a large peak value before declin
slowly towards an asymptotic value@1,8#. This stage is
called the Lyapunov transient stage. Evans, Cohen, and M
riss @1# have derived a short-time formula for the instan
neous expansion rates in the transient stage. In this pape
short-time behavior of the instantaneous expansion rate
also investigated and products of the transient time and
Lyapunov exponent are found to be 1.5–2. Information
the initial state is almost lost within the transient time. Am
trano and Berry@2# evaluated the probability distribution o
the instantaneous expansion rates for a classical Ar3 cluster.
They found that the probability distribution of the instant
neous expansion rates is in close relation to the ergodicit
the system. We observe chaotic behaviors and unive
spectra of the instantaneous expansion rates.

In previous papers@3–5#, many analytical formulas of the
Lyapunov exponent were proposed. Pettini and Landolfi@4#
calculated the Lyapunov exponents in a nonlinear lattice
various energy densities and found the relation between
Lyapunov exponent and the energy density. In this paper,
dependence of the Lyapunov exponent on the Coulomb c
pling constant is investigated in detail for 1,G,300. The
dependence is discussed for the liquid stateG,170 and the
solid stateG.170 separately.

Many authors@6–9# conjecture that the Lyapunov expo
nents must be related to the macroscopic transport co
cients because they are connected to the trajectory instab
in the phase space, which involves the loss of initial-st
information. Gaspard and Nicolis@6# found a connection be
tween the Lyapunov exponent and the diffusion coeffici
ded
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of a two-dimensional Lorentz gas. Posch and Hoover@7#
calculated the Lyapunov exponents of a dense Lennard-J
particle system and found a connection between
Lyapunov exponent and the color conductivity in a noneq
librium molecular-dynamics simulation. We present here
relation between the Lyapunov exponents and the diffus
coefficients for ion one-component strongly coupled pl
mas.

In Sec. II we show the numerical method to calculate
Lyapunov exponent and instantaneous expansion rate
the three-dimensional strongly coupled plasma particle c
~SCOPE! @18,19#. In Sec. III the results obtained with th
nonrescaled method are discussed, such as the saturati
the separation between two nearby trajectories. In Sec
the dependence of the Lyapunov exponent on the Coulo
coupling constant is investigated in detail for 1,G,300. The
dependence is also discussed for the liquid state~G,170!
and the solid state~G.170! separately.

II. LYAPUNOV EXPONENT AND INSTANTANEOUS
EXPANSION RATE

A. Definition of the instantaneous expansion rate

A classical three-dimensional system ofN particles has
3N momentump and 3N position coordinatesq. Therefore,
L~p,q! represents a 6N-dimensional phase-space point. W
can describe the motions of the particles in the system w
the HamiltonianH as

L̇[S ṗq̇D5S 2
]H

]q

]H

]p
D [G~L!,

~2.1!

H5 1
2( mv21F,

wherem, v, andF represent mass, velocity, and potent
energy. By assuming that particles have the same mass
the potential-energy depends only on the 3N position coor-
dinates, we obtain

]H

]q
5

]F~q!

]q
,

]H

]p
5

p

m
. ~2.2!

Equation ~2.1! gives a trajectory of the 6N-dimensional
phase-space pointL(t).

The Lyapunov exponent is an index of the trajectory
stability in the 6N phase space. We consider a small pert
bation of the trajectory in the 6N phase space to obtain th
Lyapunov exponent. This perturbation can be regarded
displacement that represents the difference between a r
ence pointLr(t) and a displaced pointLd(t) in the phase
space. Namely, the displacement is defined
d(t)5Ld(t)2Lr(t). Both the reference and displaced traje
tories are the solutions of Eq.~2.1!. An equation of motion
for the displacement is obtained by linearizing Eq.~2.1!,
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55 3441PARTICLE SIMULATION OF LYAPUNOV EXPONENTS . . .
ḋ[S d ṗ

d q̇
D 5T~L!d,

~2.3!

T~L![
]G~L!

]L
5S 0 2

]F„q~ t !…

]q]q

1 0
D .

This equation can be solved formally as

d~ t !5X~ t !d~0!,

X~ t ![expS E
0

t

dt T„L~t!…D . ~2.4!

The Lyapunov exponent represents the averaged expone
rate of the divergence of the displacement. It depends on
initial reference point and the direction of the displacem
in the phase space

l„L~0!,e…[ lim
t→`

1
t
lnF iX~ t !ei

iei
G,

~2.5!

e[
d~0!

id~0!i .

A new variable can be defined as an instantaneous di
gence of two initially close trajectories by

l inst„L~ t !,e…[
iX~̇ t !ei
iX~ t !ei , ~2.6!

which is called the instantaneous expansion rate. A t
variation of the instantaneous expansion rate informs
about the uniformity of the phase mixing and microsco
process in the phase space in detail. In addition,
Lyapunov exponent is redefined as a time-averaged valu
the instantaneous expansion rate

l5^l inst&[ lim
t→`

1
t E0

t

dt l inst„L~ t !,e…. ~2.7!

If the system is ergodic, the Lyapunov exponent depends
on the initial pointL~0!, but only on the direction of the
initial displacemente in the phase space. A 6N-dimensional
vectore can be expressed as a linear combination of theN
base vectors. In principle, the Lyapunov exponent given
Eq. ~2.7! coincides with one of the 6N Lyapunov exponents
corresponding to the 6N bases of the eigenvectors. If th
direction of the initial displacement is chosen at rand
~‘‘random’’ means that the direction is not perpendicular
any base eigenvectors!, it has a component of the base eige
vector corresponding to the maximum Lyapunov expone

B. Numerical calculation method

If the trajectoryL(t) depends sensitively on the initia
conditions, the displaced trajectory separates exponent
in time from the reference trajectory. The Lyapunov exp
nent defined by Eq.~2.5! can be calculated by
tial
an
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l5
1

t
lnS ud~ t !u

ud~0!u D ~2.8!

for large timet and small initial displacementud~0!u.
In the numerical calculation, we must determine an app

priate amplitude of the initial displacement so that the d
placement can be treated as a perturbation of the refer
trajectory and it does not cause numerical error in the ca
lation of the Lyapunov exponent. The initial separation b
tween two trajectories cannot be set equal to a very sm
value because an excessively small separation causes
numerical errors. Even if the initial separation is sm
enough, because of its exponential growth, the separa
becomes too large in a short time to observe the Lyapu
exponent. To avoid this difficulty the amplitude of the di
placement should be rescaled. It should be noted here
the Lyapunov exponent depends not on the amplitude of
displacement, but on its direction.

The displacement is rescaled as follows@14–17#. In the
numerical calculation, the reference and displaced traje
riesLr(t) andLd(t) are defined only at a discrete time wit
a finite time incrementDt. At the nth time step, thenth
rescaling factor is calculated as

f ~n!scale5
ud„~n21!Dt…u

ud~nDt !u
. ~2.9!

A new starting point,Ld8(nDt) of the displaced trajectory a
thenth time step is then determined by

Ld8~nDt !5Lr~nDt !1 f ~n!scaled~nDt !. ~2.10!

The instantaneous expansion rate can be calculated as

l inst~nDt !5
1

Dt
lnS ud~nDt !u

ud~0!u D . ~2.11!

The rescaling procedure makes long-time calculation p
sible. During that time, an initial direction of the displac
ment turns to the maximum stretching direction correspo
ing to the largest Lyapunov exponent. We obtain the larg
Lyapunov exponent in the system as

l[ lim
nmax→`

1
nmaxDt

(
n51

nmax
l inst~nDt !. ~2.12!

C. Simulation code

We performNVE-invariant molecular-dynamics simula
tion with the use of a three-dimensional particle codeSCOPE

@18,19#, whereN, V, andE represent the number of particle
volume, and total energy. It is necessary for particle simu
tions of dense plasmas to calculate precisely the Coulo
interactions among close and distant particles. It is, howe
very expensive to calculate forces among all particles. T
particle-particle–particle-mesh~PPPM! method @18–20# is
used in the code to treat many particles, in which partic
particle method is employed for the calculation of the forc
among close particles and the particle-mesh method@21# is
employed for the calculation of the forces among dist
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3442 55Y. UESHIMA et al.
particles. The Coulomb forces among close particles are
rectly summed up in the particle-particle method, while
the particle-mesh method the forces on a particles are in
polated from electric fields of mesh points. The electric fie
are obtained by solving the Poisson equation with char
assigned on the mesh points. To reduce numerical er
caused by the particle-mesh method, the original PP
method developed by Hockney and Eastwood@20# is im-
proved inSCOPE@18#. SCOPEis described in detail Appendix
A.

Our system comprises 500 ions in a unit cubic box a
the periodic boundary condition is adopted. The Coulo
force on a particle is directly summed up over approximat
210 particles. The number of meshes for the particle-m
method is set equal to 835512. The unit time steps used a
Dtvp50.006 for G51, Dtvp50.01 for G52, and
Dtvp50.02 for G55–300, wherevp is the plasma fre-
quency. To obtain a thermal equilibrium state, we have p
formed a pre-simulation for a duration of 200vpt before the
observation of the Lyapunov exponent. The radial distrib
tion functions are obtained for five periods of plasma os
lation in the presimulation and their time-averaged values
shown in Fig. 1. They agree quite well with Monte Car
simulation results@10–13#, which indicates the validity of
SCOPE.

III. TIME VARIATION OF DISPLACEMENT

A. Exponential divergence of nearby trajectories

Before calculating the Lyapunov exponent with the co
tinuous rescaled method, we confirm that the displacem
diverges exponentially in time. The initial displaceme
should be an appropriate amplitude, as we have discuss
Sec. II. We perform time-advanced calculations of the se
ration between reference and displaced systems with the
rescaled method for various Coulomb coupling constants
a result of the calculations, we will show that the near
trajectories separate exponentially in time.

In the six-dimensional space (px ,py ,pz ,qx ,qy ,qz), the
magnitude of the initial displacement is given by the norm
distribution and its direction is isotropic. The root me
squares ~rms’s! of the displacements are set to b

FIG. 1. Radial distribution functions obtained by SCOPE. Ho
zontal axis is the distance normalized by the ion sphere rad
Open circles, triangle, and square represent present simulatio
sults for G51, 10, and 100, and lines represent Monte-Ca
@10;12# simulation results.
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5.031023mv th in the momentum space and 5.031023a in
the position coordinates space, wherev th is thermal speed
mv th

25T. These values 5.031023mv th and 5.031023a result
in a high enough accuracy for calculating the divergence
the nearby trajectories. Figures 2~a! and 2~b! show the time
variations of the rms displacements in the 3N-dimensional
momentum and position coordinates spaces. The rms
placement starts from small values and varies irregularly
time before starting to diverge exponentially. This irregu
transient stage is called the Lyapunov transient stage. In
transient stage, the initial displacement seeks out the eig
direction in the phase space corresponding to the larges
genvalue, which is independent of time and the direction
the initial displacement. We will discuss this transient sta
in detail in Sec. IV. After the Lyapunov transient stage, it
clearly seen that the displacements diverge exponentiall
time for the various Coulomb coupling constants. This res
indicates that the chosen initial displacement is so small a
be regarded as an infinitesimal value. In other words,
motion of the displacement can be described by the line
ized equation~2.3! in this range of the displacement. Th
expansion rates in the momentum and position coordin
spaces are almost the same values. The exponential gr
of the displacements indicates that the system has the p
tive Lyapunov exponent. The averaged expansion rates
crease with the increase of the Coulomb coupling const
As shown later, the expansion rates measured by both

s.
re-

FIG. 2. Time evolution of RMS separation distances betwe
nearby trajectories in the momentum space~a! and position coordi-
nates space~b! for various Coulomb coupling constantsG51, 10,
100, 150, and 180. Time, momentum, and position are normal
by plasma frequencyvp , product of mass, and thermal speedmv th ,
and ion sphere radiusa, respectively.
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nonrescaled and rescaled methods are almost the same

B. Saturation of displacement

As shown in Figs. 2~a! and 2~b!, when the displacement
reach certain amplitudes, the diverging speeds deviate f
the exponential growth. The deviations from the exponen
~linear! growth occur around the separations ofudpu;mv th
and udqu;3;4lD for the various Coulomb coupling con
stants, wherelD is a/A3G. It is interesting to note that the
separationudqu corresponding to the deviation point is dete
mined by the Debye length even for the strongly coup
plasmas.

Following the separation distance for a long time, the r
of the separation distance in the momentum space satu
at udpu;A6mv th and the one in the position coordinat
space diverges asudqu;t1/2 for the various Coulomb coupling
constants. As shown below, these asymptotic behavior
the displacements indicate that the reference and displ
trajectories are no longer correlated. Assuming that the
locity distributions of both the reference and displaced s
tems are Maxwelliansf M(p) with the same temperature, th
displacement in the momentum space is written as

dp2[
1

N (
i51

N

~pdi2pr i !
25

1

N (
i51

N

~pdi
2 22pr i•pdi1pr i

2 !

56mVth
22

2

N (
i51

N

pr i•pdi, ~3.1!

where the relation (1/N)( i
Np i

25*0
`p2f M(p)dp53mVth has

been used. The subscriptsr andd denote, respectively, ref
erence and displaced systems, and the subscripti represents
the i th ion in the corresponding systems. Since the giv
initial displacement in the momentum space is very smal
comparison tomv th , the 3N-dimensional momentum vecto
in the reference system is almost parallel to that in the
placed system. As the rms displacement in the momen
space diverges exponentially, the initial-state information
comes lost. When the initial-state information is perfec
lost, namely, the two systems are not correlated with e
other, an angle between the three-dimensional momen
vectors in the reference and displaced systems becomes
dom. This indicates that the 3N-dimensional momentum
vector in the reference system is almost orthogonal to tha
the displaced system. Then the momentum displacemen
comesA6mv th.

The displacement in the position coordinates space
written as

dq2[
1

N (
i51

N

~qdi2qr i !
2

5
1

N (
i51

N

~dqdi
2 1dqr i

2 !1
1

N (
i51

N

2$2dqdi•dqr i

1@qdi~0!2qr i~0!#•~dqdi2dqr i !%1dq~0!2,

~3.2!
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whereqi(t)[qi(0)1dqi(t). When the two systems are no
correlated with each other, the first term (dqdi

2 1dqr i
2 ) in Eq.

~3.2! becomes the leading term of the displacement in
position coordinates space. The motion of the displacem
is then regarded as a random-walk process. The mean sq
of the displacement in the position coordinates space is
twice as large as the mean-square deviation of particles in
three-dimensional position coordinates space. As a result
rms of the displacement in the position coordinate space
verges proportionally tot1/2 in the liquid state, while it be-
comes a constant in the solid state.

IV. INSTANTANEOUS EXPANSION RATE

A. Transient behavior of the instantaneous expansion rate

To estimate the Lyapunov exponent more accurately,
calculate the instantaneous expansion rates with the resc
method for the various Coulomb coupling constan
As shown in the preceding section, we should choo
the magnitudes of the initial displacement betwe

5.031023;1mv th and 5.031023;4a/A3G in the momen-
tum and position coordinates spaces, respectively. In the
culation with the rescaling method, the normal distributi
with the rms displacements of 5.031023mv th and
5.031023a is used in the momentum and position coord
nates spaces, respectively. The instantaneous expansion
give not only the Lyapunov exponent, but also more detai
information about the uniformity of the trajectory instability

Figure 3 shows the instantaneous expansion rate
G510. Typically, it starts from a small value and increas
rapidly to a large peak value before declining slowly towar
an asymptotic value. This stage is called the Lyapunov tr
sient stage. In the transient stage, the initial displacem
seeks out the phase-space eigendirection correspondin
the maximum eigenvalue, i.e., the largest Lyapunov ex
nent. We observe how the displacement varies in the tr
sient stage. As an example, Fig. 4 shows the case tha
initial distribution of each component of the displaceme
~dpxi ,dpyi ,dpzi ,dqxi ,dqyi ,dqzi , where i51–N! has two
peaks at65.0/)31023mv th in the momentum spaces an
65.0/)31023a in the position coordinates spaces. The d
tribution relaxes to the normal distribution during th
Lyapunov transient time. After the transient time, the dis
bution does not change for any initial displacements exc

FIG. 3. Instantaneous expansion rate normalized by plasma
quency as a function of time forG510 in the transient stage.
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3444 55Y. UESHIMA et al.
for small fluctuations. This result indicates that the initia
state information is lost within the Lyapunov transient tim

The normalized ratio of the displacement magnitude
the momentum to that in the positionudpu/~udquvp! also be-
comes independent of time and the direction of the ini
displacement after the transient time. As shown in Fig. 5,
normalized ratio is proportional toG21/3 for 1<G<170 and
does not depend on the Coulomb coupling constant
G.170. In Appendix B it is qualitatively explained that th
ratio is independent of the Coulomb coupling constant in
solid state with the use of a simple model. The ratio giv
part of the information for the eigendirection correspond
to the largest Lyapunov exponent. The result is evidence
any of the directions of displacements turn to the direct
corresponding to the largest Lyapunov exponent within
transient time.

Figure 6 shows the time variation of the instantaneo
expansion rates forG51, 10, 50, and 200. The transient tim
increases as the Coulomb coupling constant increase
other words, as the Lyapunov exponent decreases. Figu
shows the products of the Lyapunov exponents and
Lyapunov transient times forG51–150. The products ar
nondimensional values. As shown in Fig. 7, the products
almost constant of 1.5–2.0, namely, the Lyapunov trans
time is proportional to the inverse of the Lyapunov expone

FIG. 4. Distribution functions of the displacement in the m
mentum space at time50 ~solid line! and time52.4 vpt ~dashed
line! for G510, wheredN represents number of particles of whic
momentum isp;p1Dp, Dp/mv th51023.

FIG. 5. The ratiodp/(dqvp) as a function ofG51;200. A
solid line is obtained by a least squares method for 1<G<160.
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B. Spectra of the instantaneous expansion rate

As shown in Fig. 6, the instantaneous expansion ra
have large fluctuations and are chaotic in time. Bursts of
instantaneous expansion rate, which are much larger tha
average, are observed forG51. This result suggests that co
lisions among particles occur rarely and strongly in a lo
region. Even forG.1, the fluctuations of the instantaneou
expansion rate are as large as their average. These beha
indicate that the trajectory instability is nonuniform in th
phase space. The instantaneous expansion rate in the as
totic stage may provide the uniformity of the phase mixi
and more precise information about the microscopic proc
Figure 8 shows the spectra of the instantaneous expan
rates forG51, 2, 10, 50, and 200. The instantaneous exp
sion rates have broad spectra and consist of three diffe
spectra. In order of frequency, the first component is a p
teau around the plasma frequency, the second decays
f22, and the last decays asf21. The plateau around the
plasma frequency may correspond to the collective motion
the plasma.

FIG. 6. Normalized instantaneous expansion rates as a func
of time for G51, 10, 50, and 200.

FIG. 7. Products of the Lyapunov exponent and the Lyapun
transient time forG51;150.
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C. Lyapunov exponent

The Lyapunov exponents are calculated for the vari
Coulomb coupling constants. With the rescaled method,
can get long-time data, 10 000 time steps~60vpt–200vpt!,
enough to regard the time-averaged instantaneous expa
rates as the asymptotic values. Figure 9 shows the de
dence of the Lyapunov exponents on the Coulomb coup
constant. The Lyapunov exponents normalized by plas
frequencyl/vp vary from 0.83 to 0.12 and are proportion
to G20.39 in the range 1<G<160. The inverse of the plasm
frequency 1/vp is the time that a particle with thermal spee
takes to travel a Debye lengthlD . The Lyapunov exponent
normalized byv th/a, l/~v th/a!, vary from 1.44 to 2.05 and
are proportional toG20.11 in the same range, wherea/v th is
the time that a particle with thermal speed takes to trave
ion sphere radius. The Lyapuhnov exponent normalized
v th/a is almost independent of the Coulomb coupling co
stant and its magnitude is of the order of one. This res

FIG. 8. Spectra of the instantaneous expansion rates forG51, 2,
10, 50, and 200.

FIG. 9. Dependence of the Lyapunov exponents normalized
plasma frequency,l/vp , ~closed circles! and those normalized by
v th/a, l/~v th/a!, ~open circles! on the Coulomb coupling constan
Thick and thin solid lines are obtained by a least-squares me
with the results ofl/vp andl/~v th/a!, respectively, for 1<G<100.
Thick and thin dashed lines are obtained by a least-squares me
with the result ofl/vp andl/~v th/a!, respectively, for 170,G,300.
s
e

ion
n-
g
a

n
y
-
lt

indicates that the trajectory instability in the phase spac
scaled by the timea/v th . As we will discuss later, this prop
erty may be universal for condensed matter in the liq
phase. The large jump of the Lyapunov exponent is obser
nearG;170, which corresponds to the phase transition fr
the liquid to the solid state in the ion one-component plasm
This phase transition point is almost the same value tha
calculated with the Monte Carlo simulations@10–13#. The
Lyapunov exponents normalized by the plasma freque
decrease more rapidly from 0.04 and proportionally toG21.1

with the increase of the Coulomb coupling constant
G.170. This result indicates that the trajectory instability
the phase space occurs at a distance shorter than the
sphere radius for solid plasmas.

In analogy to a rigid-body particle system, we may e
plain qualitatively the dependence of the Lyapunov expon
on the Coulomb coupling constant observed in the simu
tion. In a rigid-body particle system, the Lyapunov expone
is estimated from the mean relative velocityV054/Apv th the
mean free pathl , and an amplification factor of the displace
ment in a collision@3#. The amplification factor is found to
be approximately ln@( l /2R)11#, whereR represents the ra
dius of a rigid body particle. Since for a rigid body the de
sity is n5(4pa3/3)21 and the collision cross section i
s5pR2, the mean free path is written as 4a3/3R2. In the
rigid-body particle system, the Lyapunov exponent is th
estimated as

l;
V0

l
lnF l

2R
11G53A1

p

v thR
2

a3
lnF23 S aRD 311G .

~4.1!

In the liquid plasma, the repulsive force between two p
ticles is so large that a particle cannot get into the ion sph
of other particles and the nearest distance between two
ticles may be the same order as the ion sphere radius, i
pendently of the Coulomb coupling constant. In the simu
tions, the closest distance increases slightly with the incre
of the Coulomb coupling constant from 0.5a to 0.9a for
1<G<160. Then the Lyapunov exponent normalized
~v th/a! becomes of the order of one in the range 0.86–0
and becomes independent of the Coulomb coupling cons
The estimated value agrees roughly with the simulation
sult l/~v th/a!;1.4G0.11. The difference of the numerical fac
tors between the simple estimation and the simulation res
may be caused by neglecting many-body particle correla
in the estimation.

For the solid plasma, every particle is oscillating aroun
lattice point because it does not diffuse in the position co
dinates space. The rigid-body particle model cannot be
plied for the solid model, but the analogy of a nonline
lattice system can be used. Then the trajectory instability
be caused by lattice vibration as a nonlinear lattice. In
harmonic lattice, the amplitude of lattice vibration is propo
tional to the square root of the kinetic energy of a parti
and its oscillation period 2p/vp does not depend on its am
plitude. If the nonlinearity of the lattice is small, it is ex
pected that the growth rate of the trajectory instability
proportional to the square of the amplitude of the latt
vibration@4#. As a result, the Lyapunov exponent normaliz
by the plasma frequency is proportional to the kinetic e
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od
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ergy, that is,G21. This estimation is also in good agreeme
with the simulation resultl/vp;G21.1.

D. Relation between the Lyapunov exponent
and diffusion coefficient

We conjecture that the Lyapunov exponents must be
lated to the macroscopic transport coefficients. To inve
gate this relation, the diffusion coefficients are calculated
the various Coulomb coupling constants. The diffusion co
ficients are estimated from both the asymptotic mean-sq
deviations~MSD’s! of particle position and the time integra
tion of the velocity autocorrelation function. Both estim
tions agree quite well with each other for 1<G<160.

Figure 10 shows the dependence of the diffusion coe
cients on the Coulomb coupling constant. The normaliz
diffusion coefficientsD/a2vp are found to decrease from
to 231023 with the increase of the Coulomb coupling co
stant. The normalized diffusion coefficients are proportio
to G21.18 for 1<G<160. As shown in Fig. 11, the MSD o
the particle position is proportional to time, that is, the d
fusion coefficients are finite values in the same range.
phase transition point from the liquid to the solid state occ
nearG;170. Figure 11 also shows that the MSD of the p

FIG. 10. Dependence of the normalized diffusion coefficie
D/a2vp on the Coulomb coupling constant. The solid line is o
tained by a least-squares method with the results for 1<G<160.

FIG. 11. Mean-square deviation of particle position as a fu
tion of time forG510, 150, and 200.
t
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ticle position is not proportional to time, but constant f
G5200. The root-mean-square deviations of the particle
sition are 0.4a–0.5a in the range 170,G,300. This result
indicates that in the ion one-component solid plasmas,
amplitudes of the lattice vibration are 0.4a–0.5a for 170,G
,300.

As shown in Fig. 12, the diffusion coefficient is propo
tional to the third power of the Lyapunov exponent@19#
D/a2vp;(l/vp)

3 for the liquid state 1<G<160. We find a
relation between the Lyapunov exponents and the diffus
coefficients for ion one-component strongly coupled plasm
in the liquid state.

V. CONCLUSION

We have evaluated the Lyapunov exponent in the ph
space for ion one-component plasmas with the use of
three-dimensional particle codeSCOPE @18,19#. It has been
observed with the nonrescaling method that the separa
distance between two nearby trajectories diverges expo
tially in time and that the deviation from the exponent
growth occurs around the separations ofudpu;mv th and
udqu;3–4lD for the various Coulomb coupling constants.
the transient stage, the initial displacement seeks out
phase-space eigendirection corresponding to the maxim
Lyapunov exponent. After the Lyapunov transient time, t
one-body distribution of the displacements relaxes to the
tropic normal distribution and the ratioudpu/~udquvp) also re-
laxes to constants determined by the Coulomb coupling c
stant. It is also confirmed that the Lyapunov transient time
proportional to the inverse of the Lyapunov exponent.

The chaotic behavior of the instantaneous expansion
is investigated. Bursts of the instantaneous expansion rate
observed forG51, and even forG.1 the fluctuations of the
instantaneous expansion rates are as large as their aver
These behaviors indicate that the trajectory instability is n
uniform in the phase space. The instantaneous expan
rates have broad spectra and consist of three different s
tra. In order of frequency, the first component platea
around the plasma frequency, the second decays asf22, and
the last decays asf21.

The Lyapunov exponents normalized by plasma f

s

-

FIG. 12. Dependence of the normalized diffusion coefficie
D/a2vp on the Lyapunov exponent normalized by plasma f
quencyl/vp . The solid line is obtained by a least-squares meth
with the results for 1<G<160.
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55 3447PARTICLE SIMULATION OF LYAPUNOV EXPONENTS . . .
quency are found to be proportional toG22/5 for 1<G<160
and proportional toG26/5 for G.170. These states corre
spond to dense liquid and solid plasmas. The large jump
the Lyapunov exponent nearG;170 corresponds to th
phase transition from the liquid to the solid state. The o
served dependence is explained qualitatively in analogy
the rigid-body particle system and the weakly nonlinear
tice system for the liquid and the solid state, respective
The diffusion coefficients are found to be proportional to t
third power of the Lyapunov exponents in the liquid state
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APPENDIX A

In the PPPM method, three-dimensional meshes are in
duced as shown by thin solid lines in Fig. 13, which illu
trates two-dimensional meshes and particle positions
closed and open circles. We call here the thin solid a
dashed meshes the PP mesh and the PM mesh. The ro
the meshes is explained later. The thick solid line shows
two-dimensional unit system size. Every particle is book
in each corresponding PP mesh, namely, every particle h
‘‘mesh address’’ and the booking is renewed at every ti
step. In the PPPM method, the mesh addressed is easily
culated by taking an integer of the particle position norm
ized by the mesh size. This is one of the advantage of
PPPM method.

In the PPPM method, the forces among all of the partic
in the systems are calculated with two different methods

FIG. 13. Schematic diagram of two-dimensional meshes
particle positions with open and closed circles. Thin solid a
dashed lines represent coarse grained~PP! and fine~PM! meshes,
respectively. The thick solid line shows the two-dimensional u
system. Hatched and gray regions are called the PP region fo
calculation of forces on a particlei ~closed circle!.
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close particles ~PP method! and distant particles~PM
method!. In the PP method, the direct particle-particle forc
on thei th particle~closed circle! are calculated by summing
over the forces from the particlesj 1 and j 2, which are lo-
cated in the same PP mesh~hatched mesh! as thei th particle
and in its nearest-neighbor 26 PP meshes~gray meshes!.
This region of 27 PP meshes is called the PP region.
forces from the particlesj 3 and j 4 beyond the gray region ar
obtained using the PM method. The PM method is the sa
as the particle-in-cell~PIC! method @21# used in the ideal
plasma particle simulation. Namely, the charge of a part
is assigned to grid points, and using charge density at
grid points, the finite-difference Poisson equation is solved
obtain the electric field of grid points. The force on thei th
particle is then interpolated from the electric field of the g
point.

The force on thei th particle can be formally written as

Fi5e1 (
jPPP region

ej
uqi2qj u3

~qi2qj !

1eiE E E
PP region

re
uqi2qu3 ~qi2q!d3q

1ei S (
l ,m,n

@El ,m,n~qi !2El ,m,n8 ~qi !# D , ~A1!

whereqi , qj , andre are thei th andj th particle positions and
charge density of uniform background electrons, resp
tively. The first term expresses the direct particle-parti
forces from particles in the PP region. The second term is
electric force from uniform background electrons in the
region. The third term represents the force interpolated fr
the electric field of the grid points at thei th particle position
andl ,m,n are the three-dimensional grid numbers.El ,m,n~qi!
is the electric field~at the positionqi! induced by all of
particles in the system, whileEl ,m,n8 (qi) is that induced by
the particles in the PP region~hatched and gray meshes!.
El ,m,n8 (qi) should be excluded fromEl ,m,n~qi! because the
Poisson equation is solved at once using the charge de
at all grids to save computational cost. The detail will
discussed later.

In the PPPM method, errors of the force calculation ari
from the PM method. We have made the following improv
ments@18# on the original PPPM method@20#: the introduc-
tion of fine meshes~the PM mesh! for the PM calculation in
addition to the coarse-grained PP meshes, the use of
third-order spline function for both the charge assignm
and the electric-field interpolation, the use of the fourth-ord
finite-difference scheme for the Poisson equation, and
exclusion of the double-counted electric fieldEl ,m,n8 (qi) in
Eq. ~A1!.

A characteristic feature of the PIC method is the suppr
sion of forces between close particles to simulate an id
~collisionless! plasma. It causes the large error for the calc
lation of the forces among close particles. The absolute va
of the error is determined by the distance between two p
ticles normalized by the mesh size. It is shown@18# that by
employing the third-order spline function and the fourt
order finite-difference scheme the error decays proportio
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to the inverse of the fourth power of the normalized distan
between two particles, namely,;~uqi j u/D!24, whereD is the
PM mesh size andqi j[qi2qj . The fine mesh~PM mesh! is
thus required for the PM calculation. On the contrary,
large size of the PP mesh~thin solid lines! is desirable to
take many particles into account for the direct partic
particle force calculation. The size of the PP region can
chosen to be greater than the particle correlation len
which is approximately several ion sphere radii for stron
coupled plasmas. As shown in Fig. 13, the size of the fi
mesh~dashed lines! is chosen to be half of the PP mesh
the present work. Then the normalized distance betw
nearest distant particles is greater than 2,uqi j u/D.2. By using
this fine mesh size, the average error of the forces has b
shown to be less than 0.02%@18# by direct comparison with
in

rg
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r
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e
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e
h,

e
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en

the Ewald method@22#, in which the forces among all par
ticles are calculated with the periodic boundary condition.
the present work, the unit system is divided into 43 PP
meshes, as shown in Fig. 13 and the number of particle
500. The sizes of the PP mesh and the PP region are
approximately 3.2 and 9.6 times longer than the ion sph
radius, respectively. The direct particle-particle force
summed up over 5003~34!

32~1'210! particles in average.
As described before, the electric fieldEl ,m,n8 (qi) induced

by particles in the PP region should be subtracted fr
El ,m,n~qi!. In the PM method, using charge density at the g
points, the finite-difference Poisson equation is solved to
tain the electric field at grid points. In the fourth-order d
ference scheme, the charge density at the grid p
( l 8,m8,n8) induces the electric field of the grid poin
( l ,m,n),
E~ l ,m,n!52 i
2pDr l 8,m8,n8
L8M 8N8

3 (
kl50

L821

(
km50

M821

(
kn50

N821 expF i2pS klL8
~ l2 l 8!1

km
M 8

~m2m8!1
kn
N8

~n2n8! D G
sin2

pk1
L8 S 31sin2

pk1
L8 D1sin2

pkm
M 8 S 31sin2

pkm
M 8 D1sin2

pkn
N8 S 31sin2

pkn
N8 D

3
1

3 H sin pkl
L8

cos
pkl
L8

sin
pkm
M 8

cos
pkm
M 8

sin
pkn
N8

cos
pkn
N8 J , ~A2!
into

of

l
-

the
tant
u-
wherer l 8,m8,n8 represents the charge density at the grid po
( l 8,m8,n8). Since the electric fieldEl ,m,n8 (qi) is induced by
the charge density within the PP region, all of the cha
densities in the PP region should be summed over. In p
cipal,L8, M 8, andN8 should be infinite integers. Their num
bers are chosen to be 256 times larger than the unit sys
size normalized by the PP mesh size since the contributio
the particles from a great distance on the electric field dec
faster than the reciprocal of the third power of the distan

APPENDIX B

As shown in Fig. 4, the normalized ratio of the magnitu
of the momentum displacement to that of the position d
placement becomes independent of the Coulomb coup
constant in the solid state. Let us consider a simple mode
explain this ratio. The time derivative of the equation
motion, Eq.~6!, is given by

dp
••

52
d2F
•

dq2
dq2

d2F

dq2
dp. ~B1!

The time derivative of the potential can be neglected fo
small amplitude of lattice vibration. The lattice points can
t

e
n-

m
of
ys
.

-
g
to
f

a

given by q50,6d,62d,..., where d;2a. The potential
formed by the nearest-neighbor lattices can be expanded
the second order in the vibration amplitude nearq50 as

dp
••

52
e2

d3
dp, dq

•

5dp. ~B2!

The ratioudpu/udqu is then estimated as

udpu
udqu

5A e2

md3
5vpA 1

12 S 2ad D 3. ~B3!

The simulation results give that the ratio is of the order
0.3vp for G.170. The ratioa/d in Eq. ~A3! is an invariant in
the solid state. Assuming that 1.8a,d,2a, the range of the
ratio is 0.289vp,udpu/udq,0.390vp . Thus this simple mode
shows that the ratio ofudpu/~udquvp! is a constant and is in
dependent of the Coulomb coupling constant. Ifd is defined
as the nearest effective length between two particles in
liquid state, it decreases as the Coulomb coupling cons
increases. This interpretation explains qualitatively the sim
lation result in the liquid state.
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